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Abstract. Understanding the behavior of past upwelling cells is paramount when assessing future climate changes. 17 

Our present understanding of nutrient fluxes throughout the world's oceans emphasizes the importance of 18 

intermediate waters transporting nutrients from the Antarctic divergence into the middle and lower latitudes. These 19 

nutrient-rich waters fuel productivity within wind-driven upwelling cells in all major oceans. One such upwelling 20 

cell is located along the Oman Margin in the Western Arabian Sea (WAS). Driven by cross-hemispheral winds, 21 

the WAS upwelling zone’s intense productivity led to the formation of one of the most extensive oxygen minimum 22 

zones known today. 23 

In this study covering the Middle to Late Miocene at ODP Site 722, we investigate the inception of upwelling-24 

derived primary productivity. We combine novel data with existing model- and data-based evidence, constraining 25 

the tectonic and atmospheric boundary conditions for an upwelling cell to exist in the region. With this research, 26 

we build upon the original planktonic foraminifer-based research by Dick Kroon in 1991 as part of his research 27 

based on the Ocean Drilling Project (ODP) LEG 117.  28 

We show that monsoonal winds likely sustained upwelling since the emergence of the Arabian Peninsula after the 29 

Miocene Climatic Optimum (MCO) ~14 Ma, with fully monsoonal conditions occurring since the end of the 30 

Middle Miocene Climatic Transition (MMCT) ~13 Ma. However, changing nutrient fluxes through Antarctic 31 

Intermediate and sub-Antarctic Mode Waters (AAIW/SAMW) were only established by ~12 Ma. Rare occurrences 32 

of diatoms frustules correspond to the maximum abundances of Reticulofenestra haqii and Reticulofenestra 33 

antarctica, indicating higher upwelling-derived nutrient levels. By 11 Ma, diatom abundance increases 34 

significantly, leading to alternating diatom blooms and high-nutrient-adapted nannoplankton taxa. These changes 35 

in primary producers are also well reflected in geochemical proxies with increasing δ15Norg. values (> 6‰) and 36 

high organic carbon accumulation also confirm high productivity and beginning denitrification simultaneously. 37 

Our multi-proxy-based evaluation of Site 722B primary producers thus indicates a stepwise evolution of 38 

productivity in the western Arabian Sea related to the intensity of upwelling and forcing SAM dynamics 39 

throughout the Middle to Late Miocene. The absence of full correspondence with existing deep marine climate 40 

records also suggests that local processes, such as lateral nutrient transport, likely played an important role in 41 

modulating productivity in the western Arabian Sea. Finally, we show that using a multi-proxy record provides 42 

novel insights into how fossil plankton responded to changing nutrient conditions through time in a monsoon-43 

wind-driven upwelling zone. 44 

1. Introduction 45 

Within coastal upwelling zones, wind-driven Ekman transport brings nutrient-rich deep water into the photic zone 46 

(Woodward et al., 1999). This process supports enhanced primary productivity in the surface ocean. This increased 47 

productivity supports large biomass across the entire food chain, reaching far afield from the core of the upwelling 48 

zone. In addition, the high productivity in upwelling zones produces a significant amount of marine snow (both 49 

organic and inorganic), which sinks through the water column. As the organic particulates fall, they become 50 

partially remineralized, consuming oxygen and forming an oxygen-depleted zone. Yet the flux is so large that a 51 

significant volume of organic and inorganic material reaches and accumulates on the seafloor (e.g., Suess, 1980; 52 

Rixen et al., 2019a, b). 53 

Upwelling zones affect the marine carbon cycle by sequestering carbon. During upwelling, increased 54 

photosynthesis-driven primary productivity results in high organic carbon export from the photic zone into the 55 
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deep sea through the organic carbon pump (Volk and Hoffert, 1985; Ridgwell and Zeebe, 2005). Primary producers 56 

account for most of the biomass in upwelling zones, with phytoplankton accounting for > 80% of the particulate 57 

organic carbon (Head et al., 1996). Calcification by these primary producers and heterotrophic organisms feeding 58 

on them is further an important contributor to the in-organic carbon cycle of the oceans (Falkowski, 1997; Raven 59 

and Falkowski, 1999; Ridgwell and Zeebe, 2005; Millero, 2007). 60 

However, the productivity of coastal upwelling zones highly depends on atmospheric conditions as they are 61 

primarily wind-driven. Therefore wind-driven upwelling further constitutes a direct intersection between the 62 

oceans and the atmosphere. Consequently, atmospheric changes in average wind speeds are directly responsible 63 

for the intensity and size of upwelling zones (Dugdale, 1972; Shimmield, 1992; Tudhope et al., 1996; Balun et al., 64 

2010). Therefore, these atmospheric processes may also influence the community structure of primary producers 65 

and consumers within the area affected by upwelling. 66 

In the Arabian Sea – one of the most productive marine regions today (Lee et al., 1998; Honjo et al., 1999; Munz 67 

et al., 2017; Rixen et al., 2019b) – significant variability in productivity has been identified in glacial-interglacial 68 

timescales. For example, higher productivity in the Late Pleistocene is associated with interglacial periods 69 

(Schubert et al., 1998; Pourmand et al., 2007; Avinash et al., 2015; Naik et al., 2017). Conversely, these 70 

climatically driven changes in primary productivity affect the volume of the oxygen minimum zone (OMZ) and 71 

the intensity of denitrification in the region (Gaye et al., 2018). 72 

The Arabian Sea upwelling is primarily driven by the Indian Summer Monsoon (ISM) winds in the northwestern 73 

Indian Ocean (Currie et al., 1973; Rixen et al., 2019a) as an extension of the Findlater Jets. Upwelling in the 74 

Western Arabian Sea (WAS) is thus directly forced by this cross-hemispheric circulation system (Basavani, 2013; 75 

Findlater, 1969; Woodward et al., 1999). The prevailing southwesterly winds in the region during the summer 76 

months result in the displacement of large water masses (Tudhope et al., 1996; Schott and McCreary, 2001; Schott 77 

et al., 2009; Lahiri and Vissa, 2022), resulting in pronounced, intense upwelling peaks during the summer monsoon 78 

season (Lee et al., 1998; Honjo et al., 1999; Rixen et al., 2019b). During the northern hemisphere winter, the 79 

prevailing wind direction in the Arabian Sea reverses as a weaker and dryer winter monsoon establishes. The 80 

northeasterly winter monsoon winds result in an additional, albeit less pronounced, productivity spike in the region 81 

(Madhupratap et al., 1996; Munz et al., 2015, 2017; Rixen et al., 2019b). Between these two regimes – the inter-82 

monsoon season – weak and variable winds dominate, permitting the establishment of well-stratified regions in 83 

the WAS that exhibit oligotrophic surface water conditions. The impact of changes in wind regimes and upwelling 84 

intensity on plankton communities in the WAS is well-established for the modern (Schiebel et al., 2004). The shift 85 

between the different conditions generates a complex pattern of abundance shifts between nutrient-adapted and 86 

primarily meso- but potentially even oligotrophic phytoplankton communities. 87 

In the geologic past, evidence suggests that upwelling first occurred in the Arabian Sea between the Middle and 88 

Late Miocene (Kroon et al., 1991; Huang et al., 2007a; Tripathi et al., 2017; Zhuang et al., 2017; Bialik et al., 89 

2020a; Alam et al., 2022). This initiation of the upwelling occurred in conjunction with the intensification of the 90 

South Asian Monsoon system (Gupta et al., 2015; Betzler et al., 2016). Modeling studies suggest that the inception 91 

of upwelling and the monsoonal wind system was closely linked to the tectonic evolution of the Arabian Peninsula 92 

(Zhang et al., 2014; Sarr et al., 2022). To date, manganese redirection – i.e., the depletion of Mn in the sedimentary 93 

record due to Mn-reduction in the water column (Dickens and Owen, 1994). Together with sedimentological facies 94 

and micropaleontological studies (Dickens and Owen, 1999; Gupta et al., 2004) these methods have been used 95 

most effectively to track the size of the OMZ throughout the Indian Ocean and by proxy also the intensity of 96 
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upwelling derived primary productivity. However, these methods do not provide direct evidence for how changing 97 

wind and nutrient levels have interacted to result in the observed OMZ pattern. 98 

Based on current records, the earliest activity within the upwelling zone may have already occurred earlier in the 99 

Burdigalian (Bialik et al., 2020b). However, it was not until connectivity to the proto-Mediterranean was 100 

terminated (Rögl, 1999; Reuter et al., 2013; Harzhauser et al., 2007; Bialik et al., 2019; Sarr et al., 2022). After 101 

the Miocene Climatic Optimum (MCO) ~14 Ma (Flower and Kennett, 1994; Frigola et al., 2018; Sosdian and 102 

Lear, 2020) global cooling resumend and a stable, upwelling zone and a sustained OMZ resembling present day 103 

conditions was established in the Western Indian Ocean (Kroon et al., 1991; Zhuang et al., 2017; Bialik et al., 104 

2020a). 105 

Following these lines of evidence, it can be summarized that upwelling initiated during the Middle to Late Miocene 106 

during the Middle Miocene Climatic Transition (MMCT), marked by cooling sea surface temperatures (SSTs) 107 

since ~15 Ma (Zhuang et al., 2017). Upwelling subsequently intensified at ~13 Ma (Betzler et al., 2016) before 108 

reaching maximum intensity at ~11 Ma and potentially declining at ~9 Ma (Bialik et al., 2020a). Upwelling re-109 

intensified later in the Miocene and oscillated into the Plio-Pleistocene (Kroon et al., 1991; Huang et al., 2007b; 110 

Gupta et al., 2015; Tripathi et al., 2017; Alam et al., 2022). The Serravallian upwelling intensification is 111 

accompanied by significantly increased biogenic silica accumulation across the northern Indian Ocean (Keller and 112 

Barron, 1983; Baldauf et al., 1992). This biogenic silica bloom is dominated by siliceous plankton such as diatoms 113 

and radiolaria (Nigrini, 1991), indicating a sustained regime of high nutrient levels , which was able to support 114 

these primary producers (Blain et al., 1997; Schiebel et al., 2004; Mikaelyan et al., 2015). 115 

With the present study, we aim to better constrain the relationships and interactions between different plankton 116 

groups in the WAS within the context of the dynamic changes occurring in the Oman Margin upwelling cell 117 

throughout the Middle to Late Miocene. 118 

2. ODP Site 722 – Site locale, age model, and existing data 119 

Ocean Drilling Project (ODP) Site 722 (16°37'18.7" N/59°47'45.33" E) lies offshore Oman on the Owen Ridge, a 120 

300-km-long and 50-km wide feature in the WAS (Fig. 1). Today Site 722 lies within the core of the Indian Ocean 121 

Oxygen Minimum Zone (OMZ), with oxygen concentrations < 2 µmol kg-1 (McCreary et al., 2013; Garcia et al., 122 

2018). At present the Arabian Sea OMZ extends southwards from the Oman Margin between 200 and 1000 m 123 

water depth, reaching as far south as 10°N (Morrison et al., 1998; McCreary et al., 2013). 124 

The sedimentary cover at the Site location comprises nannofossil, foraminifer, and diatom-rich pelagic oozes, with 125 

silty clay (Shipboard-Scientific-Party, 1989; Rodriguez et al., 2014; Bialik et al., 2020a). Bialik et al. (2020a) 126 

recently published a revised age model for Site 722B, which we will utilize throughout this study. The age-depth 127 

correlation relies on biostratigraphic information obtained from the nannofossil assemblage data used in this study, 128 

combined with existing shipboard data (Shipboard-Scientific-Party, 1989). The age model covers the study interval 129 

over the Middle Miocene to the Late Miocene (c. 15.0 – 8.5 Ma, corresponding to a core depth of 276.62 to 404.94 130 

mbsf). Bialik et al. (2020a) further published benchtop x-ray fluorescence-based elemental data, total organic 131 

carbon content (TOC), and the calcite equivalent carbonate content in the analyzed samples. These geochemical 132 

proxy data were subsequently used in conjunction with the nannofossil assemblage data to fully constrain the 133 

response of the assemblage to changing environmental conditions in the WAS upwelling zone. 134 
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3. Methods  135 

3.1. Nannofossil and Siliceous Fragment counts and quantification 136 

We produced smear slides from 71 freeze-dried samples following the quantitative drop technique of Bordiga et 137 

al. (2015). On each slide, at least 47 field views were counted until at least 300 specimens were recorded or until 138 

over 190 field views were reached for samples containing very low abundances. During counting, nannofossils 139 

were identified down to the species level whenever possible. The occurrence of diatom frustules (including pennate 140 

and centric forms), as well as other biogenic silica fragments (including silicoflagellates and radiolarian 141 

fragments), were quantitatively recorded without further taxonomic identification (supplementary data 1). All 142 

recorded nannofossil taxa (+ siliceous fragments) were then converted into absolute abundances per g/sediment, 143 

according to Bordiga et al. (2015), with portions of the dataset already published (Bialik et al., 2020a). In addition 144 

to the above-described quantification, the high amount of biogenic silica recorded in some sections often dilutes 145 

absolute nannofossil abundances. We, therefore, applied a correction factor to account for the dilution of the 146 

assemblage due to biogenic silica accumulation (Fig. 2). Nannofossil counts were converted to nannofossil 147 

abundances per g/CaCO3 through a correction using the measured carbonate concentrations (wt. %) in the sediment 148 

(Bialik et al., 2020a). These were, in turn, used to calculate the total and relative abundances (%) to avoid biases 149 

in changing sedimentation rates on the assemblage structure. 150 

We relied on the Nannotax3 website (Nannotax 3, 2022) for detailed taxonomic reference and identification. In 151 

addition, taxonomic identification followed the concepts outlined in Perch‐Nielsen (1985) and Young (1998), the 152 

Handbook of Calcareous Nannoplankton 1–5 (Aubry, 1984, 1988, 1989, 1990, 1999), and the compilation on the 153 

taxonomy of the order Discoasterales by Aubry (2021).  154 

 Taxonomic Remarks 155 

For subsequent ecological interpretations, we combined the identified Reticulofenestra morphotypes into three 156 

size bins ranging from small (<3 µm) to medium (<3-5 µm) and large (>5 µm). There is some debate regarding 157 

the taxonomic distinction of the reticulofenestrids (genus Reticulofenestra) in the Neogene (see Young, 1998, for 158 

discussion). Several research groups (Auer et al., 2019; Gibbs et al., 2005; Imai et al., 2017; Jatiningrum and Sato, 159 

2017; Wade and Bown, 2006) apply different size ranges to differentiate Reticulofenestra taxa based on placolith 160 

size. We also note that each of these size ranges may contain a multitude of genotypes (Young, 1998). In this 161 

study, we follow the species concept of Auer et al. (2019) adapted for the Middle to Late Miocene: 162 

• Reticulofenestra spp. (small) cf. R. minuta: reticulofenestrids < 3 μm in length without a bar spanning the 163 

central area. 164 

• Reticulofenestra haqii: reticulofenestrids 3–5 μm in length with an open central area. 165 

• Reticulofenestra antarctica: reticulofenestrids 3–5 μm in length with a closed central area. 166 

• Reticulofenestra pseudoumbilicus (small): all reticulofenestrids 5–7 μm in length. 167 

• Reticulofenestra pseudoumbilicus (sensu stricto): all reticulofenestrids >7 μm in length. 168 

3.2. Planktonic foraminifera counts and quantification 169 

For foraminifer analysis, 28 samples were freeze-dried, weighed, and wet-sieved using mesh sizes 250, 125, and 170 

63 μm. After sieving, sample residues were oven dried at 40°C. For quantitative foraminiferal analyses, the size 171 

fractions > 250 µm and 250-125 µm were examined under a stereomicroscope (Zeiss V8). In each sample, at least 172 

200 specimens were picked and identified. In 8 samples, less than 200 specimens were found in the available 173 
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material. When necessary, samples were split into smaller aliquots (splits). The total number of foraminifera in the 174 

sediment (N/g) was calculated from the number of the counted specimen and the number of splits. Relative 175 

abundances (%) were calculated for each species (see supplementary data 2 for details). 176 

3.3. Statistical Analyses and Ordination 177 

All applied statistical and ordination methods were performed using PAST4 (v. 4.11 released 2022-09-13; Hammer 178 

et al., 2001). The applied methods include correlation matrices between nannofossil taxa and XRF-based 179 

environmental proxy data for dust flux and Mn depletion, the abundance of siliceous fragments, and calcite 180 

equivalent CaCO3 content (supplementary data 3). Percentage data were then arcsine-transformed before cluster 181 

analyses and ordination methods. The arcsine transformation was applied to generate a statistically viable dataset 182 

suitable for the applied clustering and ordination methods (Sokal and Rohlf, 1995; Hammer and Harper, 2006; 183 

Auer et al., 2014, 2019; Bialik et al., 2021) and applies the universal paired group method with arithmetic mean 184 

(UPGMA) with Bray-Curtis distance. Cluster stability was further evaluated by using UPGMA clustering with 185 

Euclidian distance and Ward's method. 186 

The contributing taxa of each cluster were subsequently evaluated based on similarity percentage (SIMPER) 187 

analysis (Bray-Curtis similarity). The correspondence of nannofossil variability within each sample with 188 

environmental parameters was investigated using the non-metric multidimensional scaling (nMDS), where 189 

geochemical proxy data (see sect. 2; Fig. 3) was used as environmental variables and visualized as vectors within 190 

the two-dimensional coordinate space of the nMDS. Additionally, several diversity indices (see supplementary 191 

data 1), including the Shannon H’-diversity, were automatically for the calcareous nannofossil assemblage 192 

(Hammer and Harper, 2006). 193 

4. Results 194 

4.1. Calcareous Nannofossils 195 

 Nannofossil abundance, diversity 196 

Nannofossil preservation is good to moderately good based on visual evaluation under light and scanning electron 197 

microscopy. Overall preservation in biogenic-silica-rich samples was slightly poorer than in samples with little or 198 

no biogenic silica. 199 

Total nannofossil abundances range from 8.74*108 to 5.42*1010 per g/CaCO3, with an average of 9.43*109 and a 200 

median of 7.32*109. By comparison, total nannofossils per g/sed. range from 2.75*108 to 4.11*1010 with an average 201 

of 5.73*109 and a median of 4.04*109. Siliceous fragments range from no fragments to 1.11*1010 per g/sed., with 202 

an average of 1.20*109 and a median of 1.87*109. In the three uppermost samples taken from Core 722B-30X, 203 

small placolith abundance (primarily Reticulofenestra minuta) increases sharply above the base absence (Ba) of 204 

Reticulofenestra pseudoumbilicus (Backman et al., 2012; Agnini et al., 2017) above 8.8 Ma (Fig. 2). For details 205 

on the abundance and variability of individual nannofossil taxa, please refer to the supplementary material 206 

(supplementary data 1). 207 

 Clusters and Ordination 208 

Cluster analysis (UPGMA, Bray-Curtis similarity) resulted in 4 major clusters (clusters 1-4) that were defined at 209 

a similarity cutoff of 0.61 with a cophenetic correlation coefficient of 0.81. Clusters 1 and 4 were again split into 210 

2 (clusters 1a-b) and 3 (clusters 4a-c) sub-clusters, respectively, at a similarity cutoff of 0.66 (Fig. 4a). 211 
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Bootstrapping (N=1000) shows weak support for individual clusters reflecting the overall strong similarities in the 212 

assemblage composition of the studied samples. However, one-way ANOSIM shows p-values of <0.05, indicating 213 

that the separated clusters are statistically significant. 214 

Based on SIMPER analysis, the clusters and subclusters are primarily defined by the abundance variability of 215 

reticulofenestrids, discoasterids, Cyclicargolithus floridanus, and, to a smaller extent, Coccolithus pelagicus, and 216 

Sphenolithus spp. Based on these results, we infer that the clusters represent taphogroups, each reflecting different 217 

environmental conditions (see Auer et al., 2014). 218 

Taphogroup (TG) 1a is characterized by a very high abundance of small reticulofenestrids. TG 1b is similarly 219 

characterized by a high abundance of small reticulofenestrids, although lower than TG 1a, with a higher abundance 220 

of medium reticulofenestrids and Cyclicargolithus floridanus. TG 2 is characterized by a high abundance of C. 221 

floridanus, and TG 3 by a high abundance of large reticulofenestrids with common discoasterids. TG 4 and its 222 

subgroups are primarily defined by the variation of the three size ranges of reticulofenestrids, with TG4a exhibiting 223 

the highest abundances of small reticulofenestrids, TG4b showing the lowest amounts of both small and medium 224 

reticulofenestrids, and through TG4c high numbers of both medium and large reticulofenestrids. See table 1 for a 225 

summary of the TGs and the supplementary material (supplementary data4) for a statistical breakdown of the 226 

contribution of all taxonomic groups to each TG. 227 

The cluster analysis results are well represented within the nMDS, with TGs splitting well along coordinates 1 and 228 

2. Furthermore, the recorded stress of the nMDS is 0.13, indicating that the results are robust (Clarke, 1993). 229 

However, a more conservative approach has recently been put forward, recommending that nMDS outputs 230 

exhibiting stress above 0.1 should be treated with extreme caution (Bialik et al., 2021). We, therefore, note the 231 

overall high compositional similarity of clusters, particularly sub-clusters, which is likely the cause of the high 232 

stress in the nMDS. We found a positive loading for TOC, and siliceous fragments, along coordinates one and two. 233 

Dustflux, calculated as ln((Zr+Ti+Fe)/(Al+K)) following Kunt et al. (2015), is positively loaded on coordinate one 234 

but negatively loaded on coordinate two. The Mn/Al ratio is loaded negatively on coordinate 1 and positively on 235 

coordinate 2. Whereas CaCO3 is loaded negatively on both coordinates (Fig. 4b). 236 

4.2. Planktonic Foraminifera 237 

Out of 28 samples one sample (722B-34X-3W 30-32, ca. 10.2 Ma) was barren in planktonic foraminifera. In the 238 

remaining 27 samples, 27 taxa of planktonic foraminifera were identified. Of these taxa, 5 (Globigerinoides ruber, 239 

Globorotalia menardii, Neogloboquadrina acostaensis, Paragloborotalia mayeri) have their stratigraphic first or 240 

last occurrence within the studied interval. All recorded taxa were grouped according to their environmental 241 

preferences following established environmental assignments of either mixed layer taxa, open ocean thermocline 242 

taxa, open ocean sub-thermocline taxa, upwelling taxa, or unknown (Table 2). 243 

Through the studied interval, thermocline species and mixed layer taxa are the most abundant (abundance reaches 244 

more than 50%). Both mixed layer and upwelling taxa increase in prevalence through the studied interval, while 245 

thermocline species decrease. A sharp drop in thermocline taxa occurs between 11 Ma and 10 Ma, corresponding 246 

to the disappearance of Paragloborotalia mayeri, the dominant taxa until that time. Mixed layer taxa remain at a 247 

near-stable level from 11 Ma onwards. Upwelling taxa are not represented in two samples between 11 Ma and 248 

10.8 Ma, after which this group exhibits a steady increase until the end of the studied interval. Sub-thermocline 249 

taxa are present between 9.0 Ma and 9.5 Ma and account for only a small fraction (less than 3% at most) 250 

of the assemblage.  251 
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5. Discussion 252 

5.1. Definition of taphogroups and their paleoenvironmental significance 253 

Based on the above results, we interpret the analyzed samples in the context of their taphogroups. Taphogroups 254 

represent the total preserved fossil assemblage deposited at a given time in the past. Samples assigned to contain 255 

the same taphogroup can therefore be assumed to reflect similar local surface water conditions at Site 722. 256 

Taphogroup 1a: TG1a is dominated by small reticulofenestrids. We, therefore, interpreted this TG as 257 

indicative of high nutrient levels facilitating the proliferation of small bloom-forming placoliths (primarily 258 

Reticulofenestra minuta; see Table 1). Small reticulofenestrids are commonly associated with high 259 

terrigenous nutrients in near-shore environments (see references in Table 1). However, as Site 722 was 260 

always located in the open ocean, a different mechanism must be invoked for this dominance of small 261 

reticulofenestrids. Studies based on coccolithophore culture studies indicate that the proliferation of small 262 

placoliths may result from nitrogen limitation in a highly productive open marine environment. For 263 

example, Paasche (1998) showed that modern-day coccolithophores tend to increase the formation of small 264 

placoliths during N-limitation. Hence, we assume that the proliferation of small reticulofenestrids in the 265 

open ocean results from increasing nitrogen limitation compared to other macro- or micronutrients. 266 

Taphogroup 1b: The presence of common C. floridanus in combination with abundant small and medium-267 

sized reticulofenestrids within this assemblage indicates elevated nutrient sources (see Table 1). The very 268 

high but not dominant abundance of small reticulofenestrids may also point to N-limited nutrient sources. 269 

This will be analogous to the fringes of the modern-day Arabian Sea upwelling cell, where nitrogen may 270 

be the primary limiting nutrient (Anju et al., 2020). The overall diversity suggests likely oligotrophic 271 

conditions, which may also be phosphate co-limited at times. We thus interpret TG 1b as reflective of open 272 

marine conditions with elevated nutrient levels. Primary nutrient supply, however, is still basically 273 

controlled by nutrients derived through the remineralization of locally produced particulate organic matter 274 

(Cullen, 1991), likely supplied to the surface water through seasonal mixing. 275 

Taphogroup 2: Within TG 2, common C. floridanus occurs together with medium and large 276 

reticulofenestrids, commonly associated with warmer water temperature, a deep nutricline, and potentially 277 

elevated nutrient conditions. Therefore, we interpret this TG to reflect open marine conditions without 278 

directly indicating upwelling-derived nutrients. Nutrients were likely mainly derived through POM 279 

remineralization, with low external influx through upwelling. 280 

Taphogroup 3: We interpret TG 3 as reflecting high nutrient conditions with potentially seasonal 281 

stratification. Previous studies (Auer et al., 2014; Lohmann and Carlson, 1981) generally associated large 282 

reticulofenestrids with high nutrient conditions. Imai (2015) states that dominant large reticulofenestrids 283 

and common discoasterids indicate low nutrient conditions and a deep nutricline compared to a high 284 

abundance of small reticulofenestrids. However, this interpretation is questioned by the association of TG 285 

3 with high TOC, high dust flux, and high silica accumulation rates, indicating strong upwelling conditions 286 

(Fig. 4b). In particular, the association with high dust flux suggests that TG 3 is associated with 287 

exceptionally high primary productivity (Guieu et al., 2019). Furthermore, modern analogs based on large 288 

Geophyrocapsa taxa, descendants of the genus Reticulofenestra (Samtleben, 1980; Perch-Nielsen, 1985; 289 

Nannotax 3, 2022), are more abundant in high nutrient upwelling zones (Bollmann, 1997). 290 
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This discrepancy in the interpretation of TG 3 with available environmental data could be partially 291 

addressed by extreme seasonality. In such a setting, diatom and coccolithophore accumulation occurs in 292 

different nutrient regimes. Modern-day culture studies of coccolithophores (Paasche, 1998) also show that 293 

the calcification of coccolithophores increases during nitrogen excess and phosphate limitation. Therefore, 294 

we interpret TG 3 as indicative of high upwelling during the Miocene summer monsoon season and with a 295 

deep nutricline during the rest of the year. Similar co-occurrences of diatoms and discoasterids were 296 

previously recorded in the eastern equatorial pacific and the Mediterranean (Backman et al., 2013). 297 

Taphogroup 4a: Taphogroup 4a is not dominated by a specific reticulofenestrid size range while also 298 

containing a diverse assemblage in general (see Table 1). We, therefore, interpret this TG to show weaker 299 

upwelling conditions during transient climatic conditions. Furthermore, weaker productivity is implied by 300 

a stronger association of TG 4a with higher Mn/Al values (Fig. 4b). 301 

Taphogroup 4b: The high dominance of large reticulofenestrids of TG 4b would suggest elevated, 302 

upwelling-derived nutrient levels in a temperate upwelling zone (see above). Furthermore, the size of 303 

experimental studies of calcification rates by Paasche (1998) may also be indicative of p-limitation. High 304 

nutrient conditions are corroborated by the general association of TG 4b with siliceous fragments, TOC, 305 

and dust flux in the nMDS (Fig. 4b). 306 

Taphogroup 4c: Taphogroup 4c is defined by both medium and large reticulofenestrids (Table 1, 307 

supplementary material). Therefore, we interpret this TG as indicative of weaker but sustained upwelling 308 

conditions. In addition, it shows some association with upwelling indicators such as dust flux and no 309 

association with the Mn/Al ratio in the sediment (Fig. 4b), indicating that it only occurs during active OMZ 310 

at Site 722. 311 

 312 

5.2. Temporal Progression of Environmental Changes 313 

Individual taphogroups represent specific ecospaces, but to understand the relation and transitions between these 314 

ecospaces, in their temporal context their variability has to be considered in relationship to other proxies, within a 315 

multi-proxy approach. Integrating the analyses of nannofossil taphogroups (Table 1), planktonic foraminifer data 316 

(Fig. 5), abundance of siliceous fragments and geochemical data (Bialik et al., 2020a), we deliniate temporal 317 

intervals in Site 722. These reflect stratigraphic intervals of specific environmental conditions in the WAS. 318 

Interval 1 (Base of study interval – 13.4 Ma): This interval is characterized by variable taphogroups belonging 319 

to TG 1a, TG 2, TG 4a, and TG 4b. The variable taphogroups reflect a diverse and variable nannofloral assemblage 320 

in this interval. Overall the nannofloral assemblages are characterized by an overall high abundance of 321 

Cyclicargolithus floridanus (Fig. 5). However, Cylcicargolithus floridanus abundances decline through the 322 

interval to its stratigraphic Top (T) occurrence at Site 722. In addition, we record abundant small reticulofenestrids 323 

and peaks of discoasterids (TG 4a, 4b). The average number of taxa in interval 1 is 14.9 ± 2.1 (N = 13), with an 324 

average Shannon H' diversity of 1.6 ± 0.4. 325 

The planktonic foraminifer assemblage is dominated by thermocline-dwelling taxa (predominantly P. mayeri). 326 

Siliceous fragments are absent. We interpret this interval as a relatively low nutrient environment based on the 327 

above multi-group assemblage composition. In particular, the presence of TG 1a and 2 points to only moderately 328 

elevated nutrient concentrations in the surface waters at Site 722 during MMCT. The common occurrence of 329 
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Sphenolithus spp. and discoasterids suggests intermitted – potentially seasonal – stratification. These results are 330 

consistent with the relatively warm SSTs recorded during this interval (Zhuang et al., 2017), further supporting a 331 

generally muted upwelling regime in the WAS during interval 1. These assumptions are corroborated by a more 332 

limited OMZ extent in the Indian Ocean, evidenced by elevated but declining Mn content, as well as the absence 333 

of notable drift deposits, and thus lower wind intensity, in the Maldives (Bialik et al., 2020b; Betzler et al., 2016). 334 

Interval 2a (13.4 – 12.0 Ma): Interval 2a is solely comprised by TG 4c. This taphogroup is characterized by a 335 

diverse assemblage with abundant R. pseudoumbilicus and common medium-sized reticulofenestrids and 336 

discoasterids. The average number of taxa is 16.6 ± 2.2 (N = 7), with an average Shannon H' index of 1.8 ± 0.3. 337 

Siliceous fragments are absent. 338 

Planktonic foraminiferal assemblages are dominated by thermocline species with increased abundances of mixed 339 

layer species compared to interval 1. Within interval 2a, a first slight increase in upwelling indicative taxa 340 

(primarily G. bulloides) is observed. We interpret this interval as indicative of a first shallowing of the thermocline 341 

due to the initial strengthening of the wind-driven upwelling regime at Site 722. This intensification is likely related 342 

to an intensification of the monsoon system following the end of the MMCT (Betzler et al., 2018). The 343 

intensification of the monsoon system is also consistent with the establishment of an increased OMZ extent and 344 

drift deposits in the Maldives (Betzler et al., 2016). 345 

Interval 2b (12.0 Ma – 11.0 Ma): Interval 2b comprised primarily of assemblages belonging to TG 4c, with one 346 

sample belonging to cluster 1b. The interval similar to interval 2a is characterized by assemblages (TG4c) with 347 

abundant medium-sized reticulofenestrids that occur together with an increase in large reticulofenestrids. 348 

Furthermore, we detect a low but noteworthy increase in Umbilicospahera jafari and a decline in Discoasteraceae. 349 

Furthermore, the abundance of small reticulofenestrids is lower than in interval 2a. These differences within the 350 

assemblage are also the reason why interval 2 was separated into the two sub-intervals. The average number of 351 

taxa in interval 2b is 15.6 ± 2.6 (N = 16), with an average Shannon H' index of 1.5 ± 0.3. The base of interval 2b 352 

also contains the first occurrence of diatoms within the section. Planktonic foraminifer mixed layer taxa decrease 353 

noticeably while upwelling taxa further increase in this interval. 354 

We interpret this interval to mark a progressive intensification in the upwelling of high-nutrient subsurface waters. 355 

We base this on 1) the increase in siliceous fragments (diatoms and other siliceous biota, 2) higher abundances of 356 

upwelling indicative planktonic foraminiferal taxa, 3) generally nutrient-adapted nannofossil taxa (i.e., medium 357 

and large sized reticulofenestrids; Beltran et al., 2014; Auer et al., 2015; Imai et al., 2015) show progressive 358 

abundance increases. Intensified upwelling is consistent with increasing δ15N values and continuous cooling at 359 

Site 722 (Zhuang et al., 2017; Bialik et al., 2020a). Increased upwelling-derived nutrient access in the northern 360 

Indian Ocean is further supported by increased productivity and nitrogen utilization in the Maldives (Betzler et al., 361 

2016; Ling et al., 2021). The upwelling intensification after 12 Ma is consistent with an overall increase in global 362 

atmospheric circulation and oceanic current strength (House et al., 1991; Gourlan et al., 2008; Groeneveld et al., 363 

2017; Betzler and Eberli, 2019). 364 

Interval 3a (11.0 Ma – 9.6 Ma): Interval 3a is characterized by a dominance of large reticulofenestrids (R. 365 

pseudoumbilicus) (TG 3) with intermittently common discoasterids and small reticulofenestrids (TG 4b). Notably, 366 

medium-sized reticulofenestrids show very low abundances compared to the previous intervals. The abundance of 367 

Umbilicosphaera jafari is highly variable but overall common, while sphenoliths are rare in the lower part of the 368 

interval before increasing (up to ~ 40 % of the assemblage) in the upper part. Within this interval, we also note the 369 

occurrence of variable abundances of small reticulofenestrids between ~10.5 to 9.9 Ma. The average number of 370 
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taxa is 14.3 ± 5.1 (N = 22), with an average Shannon H' index of 1.1 ± 0.4. The high environmental variability 371 

within this interval is illustrated by alternations between assemblages belonging to TG 3, 4b, and 4c. Siliceous 372 

fragments increase significantly in abundance (Fig. 5). Diatoms generally dominate the phytoplankton assemblage, 373 

even outcompeting calcareous nannoplankton in terms of total abundance. High diatom abundances are especially 374 

prevalent within samples assigned to TG 3. 375 

Mixed layer taxa dominate planktonic foraminifer assemblages and increase in this interval, together with 376 

upwelling taxa. Notably, thermocline species decline to less than half of their previous abundance. One sample 377 

(722B-34X-3W 30-32) is barren of planktonic foraminifers. The lack of foraminifera is likely due to the limited 378 

sample amounts washed for this study, in conjunction with the high accumulation rates of phytoplankton (diatoms 379 

and calcareous nannofossils) in this stratigraphic interval. 380 

Based on the high abundance of diatoms and a generally high nutrient-adapted nannofossil assemblage, we 381 

interpret interval 3a as a peak in upwelling intensity at Site 722. This interpretation is consistent with previously 382 

published δ15N data from Site 722 and Sites U1466 and U1468, and other geochemical datasets in the Maldives 383 

(Bialik et al., 2020a; Ling et al., 2021). In addition, high productivity and OMZ expansion is further recorded by 384 

heightened TOC, Uranium accumulation, and low Mn deposition within the northwestern Indian Ocean (Dickens 385 

and Owen, 1994, 1999; Betzler et al., 2016; Bialik et al., 2020a). This corresponds to an increase in Antarctic 386 

Bottom Waters (AABW) formation due to the expansion of North Atlantic Deep Waters (NADW), indicative of 387 

an intensified global thermohaline circulation (Woodruff and Savin, 1989). Increasing numbers of discoasterids in 388 

the upper part of interval 3a, and decreasing diatoms numbers, also point towards declining upwelling, which 389 

amplifies within the next interval. 390 

Interval 3b (9.6 Ma – 8.8 Ma): Interval 3b continues to exhibit a dominance of large reticulofenestrids (R. 391 

pseudoumbilicus) (TG 3), although discoasterids noticeably decline and are replaced by higher abundances of 392 

sphenoliths (primarily Sphenolithus moriformis), with abundances of ~ 40 % of the total assemblage. Small- and 393 

medium-sized reticulofenestrids are rare in this interval. The average number of taxa is 15 ± 2.3 (N = 10), with an 394 

average Shannon H' index of 1.4 ± 0.3. 395 

We thus interpret interval 3b to indicate decreasing upwelling intensity based on the increase in nannofossil taxa 396 

adapted to warmer and more stratified water masses, such as Discoaster spp. and Sphenolithus spp. (Lohmann and 397 

Carlson, 1981; Castradori, 1998; Negri and Villa, 2000; Blanc-Valleron et al., 2002; Gibbs et al., 2004a; Aubry, 398 

2007; Villa et al., 2008; Schueth and Bralower, 2015). The waning upwelling of the northern Indian Ocean is 399 

corroborated by the proliferation of warm water diatom taxa in the Maldives (Site 714; Boersma and Mikkelsen, 400 

1990). Decreasing δ15N values support waning upwelling-derived productivity after 10 Ma at both Site 722 and in 401 

the Maldives and decreasing TOC fluxes at Site 722 (Gupta et al., 2015; Bialik et al., 2020a; Ling et al., 2021). It 402 

is, however, important to note that these changes are not reflected in the planktonic foraminifer community, which 403 

shows a continuously high presence of upwelling taxa (e.g., G. bulloides). One possibility would be that the 404 

upwelling cell became more seasonal, with nannoplankton-dominated photoautotrophic communities proliferating 405 

seasons with lower upwelling. However, primarily heterotrophic, non-symbiont-bearing taxa such as G. bulloides 406 

were still sustained by high primary productivity during monsoon season, as is the case in the present-day 407 

upwelling cell along the Oman Margin (Schiebel et al., 2004; Rixen et al., 2019b). 408 

We assume that this waning in upwelling is related to a decrease in the hemispheric temperature gradients leading 409 

to a weaker summer monsoon wind system in the Indian Ocean. This reduction in temperature gradients is 410 

consistent with a decreasing trend in minimum deep-water temperatures, based on global benthic foraminifer 411 
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compilations and deep-water records from the ninety-east-ridge (Site U1443; Fig. 1) (Lübbers et al., 2019; 412 

Westerhold et al., 2020). Furthermore, pollen data (Pound et al., 2012) suggests that progressive cooling of the 413 

northern hemisphere (NH) over the Middle to Late Miocene intensified. Northern hemisphere cooling 414 

consequently reduced the asymmetry of hemispheric temperature gradients. Thereby reducing summer monsoon 415 

wind intensity by muted northward migration of the intertropical convergence zone (ITCZ) in NH summer (Gadgil, 416 

2018; Yao et al., 2023). 417 

Interval 4 (8.8 Ma – top of study interval): Interval 4 – consisting of only three samples – is defined by the 418 

bloom of small reticulofenestrids (R. minuta) in the nannofossil assemblage. We also note an elevated abundance 419 

of Umbilicosphaera jafari and a marked decline in Sphenolithus spp. relative to interval 3b. This interval consists 420 

entirely of assemblages belonging to TG 1b. The average number of taxa is 17.3 ± 0.5 (N = 3), with an average 421 

Shannon H' index of 0.5 ± 0.0. Despite the high number of nannofossil taxa in this interval, the low diversity 422 

directly results from the dominance of small reticulofenestrids. Siliceous fragments (primarily diatoms) persist but 423 

are much rarer than in interval 3. This reduction in siliceous fragments is part of an ongoing decrease in biogenic 424 

silica accumulation at Site 722, which culminates in a shift from phytoplankton to zooplankton-dominated silica 425 

accumulation by ~8 Ma (Nigrini, 1991; Prell et al., 1992). Planktonic foraminifera assemblage remains consistent 426 

with the upper part of interval 3, showing relatively high abundances of upwelling and mixed-layer taxa. We 427 

interpret this interval as a new nutrient regime related to a significant turnover in coccolithophore species around 428 

the same time (Young, 1990; Imai et al., 2015). However, the low sample number in this interval limits further 429 

interpretation. 430 

5.3.  Plankton community responses to changing nutrient regimes 431 

Based on the intervals defined by the nannofossil taphogroups, a progression of plankton communities becomes 432 

apparent within the Middle to Late Miocene at Site 722. Their variation highlights the strong interactions between 433 

monsoon wind strength, nutrient availability, and primary productivity. Therefore, we link our new assemblage 434 

data with an extensive data compilation highlighting a progressive temperature decline and increased productivity 435 

along the Oman Margin during this time (Fig. 3; Zhuang et al., 2017; Bialik et al., 2020a). 436 

Declining high Mn/Al ratios and diverse nannofossil assemblages point towards a relatively low nutrient regime 437 

between 15.0 and 13.5 Ma. Patterns of Mn decline have been observed since at least 15 Ma in the Maldives, which 438 

is in line with observations at Site 722 (Betzler et al., 2016; Bialik et al., 2020a, b). This period thus represents a 439 

progressive increase in upwelling intensity during the MMCT as a result of globally declining SSTs and sea levels 440 

following the end of the MCO (Zhuang et al., 2017; Miller et al., 2020). Both nannoplankton and planktonic 441 

foraminifera reflect primarily open marine, low-nutrient conditions. Thermocline-dwelling taxa dominate 442 

planktonic foraminifer assemblages, indicative of a shallow and poorly ventilated thermocline (Sexton and Norris, 443 

2011; Lessa et al., 2020). Nannoplankton communities further highlight a progressive change in environmental 444 

conditions within this timeframe, as indicated by a high cluster variability after 14 Ma (Fig. 5). 445 

By 13.5 Ma, these progressive changes culminate in a first sustained community shift in both nannofossil and 446 

planktonic foraminifer records. The changes are reflected by a shift towards more nutrient-adapted taxa, such as 447 

increasing C. pelagicus and decreasing sphenolith abundances. Furthermore, increased total and relative 448 

abundances of medium and large reticulofenestrids are also observed (Figs. 2 & 5). 449 

These abundance changes in high nutrient-adapted primary producers coincide with increases in mixed-layer 450 

dwelling planktonic foraminifer taxa. We consider these shifts to be a coupled response of primary producers to 451 
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increased surface water nutrient levels that are subsequently allowed by a population increase of heterotrophs such 452 

as foraminifera. Nannofossil communities also show a clear shift towards more nutrient-adapted taxa, such as 453 

increasing C. pelagicus and decreasing sphenolith abundances. We interpret this change as the establishment of a 454 

more pronounced upwelling regime, which also resulted in the expansion of the OMZ further into the Indian 455 

Ocean, reaching the Maldives by ~13 Ma. Furthermore, available TOC data still show low accumulation rates at 456 

Site 722 at this time, indicating that organic matter was still recycled mainly within the expanding OMZ (Bialik et 457 

al., 2020a). 458 

This regime continued until ~12 Ma when a further community shift in the nannofossil taphogroups is detected 459 

within interval 2b. Medium-sized reticulofenestrids become dominant within the reticulofenestrids and 460 

significantly increase their total abundance. At the same time, thermocline dwelling foraminifer increase 461 

abundance and mixed-layer taxa decrease. Additionally, the overall nannofossil assemblage sees a decrease in 462 

diversity, coupled with the first but still rare and intermittent occurrences of diatoms within the record (Fig. 5). 463 

Within this interval, TOC accumulation is also increasing for the first time above 0.5 wt.% and generally shows 464 

an increasing trend through interval 2b. These changes, however, happen without any significant changes in overall 465 

temperature within the upwelling zone (Zhuang et al., 2017). Globally, a northward shift of the southern 466 

hemisphere westerlies is recorded by 12 Ma. We hypothesize that this shift and a potential increase in wind strength 467 

may have also increased the formation of nutrients in intermediate water masses within the sub-Antarctic frontal 468 

system simultaneously. This interpretation would be in line with the effect increasing sea ice cover would have 469 

had on intermediate water transportation based on modeling data and evidence from southern hemisphere records 470 

(Groeneveld et al., 2017; Laufkötter and Gruber, 2018). Such enhanced nutrient transport within the thermocline 471 

would reconcile increased productivity without increasing the total volume of upwelling – and consequently 472 

reducing SSTs - along the Oman Margin. The first occurrence of diatoms within this interval may also point 473 

towards a shift in nutrient availability and increased phosphorus and silicon availability within the upwelling cell 474 

and likely globally (Keller and Barron, 1983). Decreasing P- and Si-limitation would thus provide more favorable 475 

conditions for highly efficient photosynthesizers, such as diatoms within the water column (Schiebel et al., 2004; 476 

Brembu et al., 2017). Within the plankton community, we also note the first intermittent occurrences of elevated 477 

G. bulloides abundances, indicative of high productivity upwelling conditions (Kroon et al., 1991; Gupta et al., 478 

2015). 479 

By 11 Ma, global climatic shifts and further decreasing sea levels (Miller et al., 2020; Westerhold et al., 2020) led 480 

to an apparent intensification of upwelling, as evidenced by decreasing SSTs and further community shifts within 481 

the plankton communities. As a result, diatoms dominated mineralizing primary producers by 11 Ma, outpacing 482 

nannoplankton for the first time. Nannoplankton communities responded to decreasing SSTs and increased nutrient 483 

levels with declining diversity and a high abundance of large reticulofenestrids, which dominate the assemblage. 484 

We also note that discoasterids are particularly common within the assemblage throughout interval 3. Within the 485 

planktonic foraminifer community, mixed-layer taxa increase. Additionally, by 11 Ma, we note a first sustained 486 

occurrence (> 25 %) of G. bulloides. Together we interpret these changes to indicate sustained primary productivity 487 

within the upper water column. 488 

However, these conditions are not easily reconciled with the abundance of discoasterids and sphenoliths within 489 

our nannofossil record. Both taxa are considered to be indicative of low nutrient conditions and increased 490 

stratification (Gibbs et al., 2004a; Schueth and Bralower, 2015; Karatsolis and Henderiks, 2022). This 491 

interpretation seems to be opposite to our recorded high abundances of mixed layer dwelling foraminifera and high 492 
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nutrient-adapted diatoms dominating primary productivity. A possible way of integrating these opposite 493 

requirements is to evoke a highly seasonal upwelling cell with strong upwelling in one season and calm and 494 

stratified surface waters providing a deep thermo- and nutricline in the other.  495 

This seasonal variability is most evident during interval 3b when Sphenolithus abundances also increase together 496 

with overall nannofossil diversity (Fig. 5) after 9.6 Ma. These changes in the nannofossil community are also 497 

associated with decreasing diatom abundances and TOC fluxes, while upwelling indicative planktonic foraminifer 498 

taxa remain common. It thus seems that an initial spike in upwelling and, therefore, diatom accumulation waned 499 

again, pointing towards a significant reorganization of the upwelling cell after 9.6 Ma. 500 

Within the topmost three samples of the record, belonging to interval 4, we note an increase in small 501 

reticulofenestrids corresponding to the base absence of Reticulofenestra pseudoumbilicus around 8.8 Ma, 502 

according to accepted nannofossil biostratigraphy (Young, 1990; Backman et al., 2012; Imai et al., 2015). We note 503 

that this significant size change and an increase in small placoliths are very pronounced within our WAS records 504 

from Site 722, in agreement with Young (1990). While we cannot contribute to the discussion if this assemblage 505 

shift constitutes an evolutionary-driven adaptation of taxa within the genus Reticulofenestra or purely an 506 

ecophenotypically driven size adaption (Young, 1990; Imai et al., 2015). We still note that a clear link to changing 507 

nutrient levels within the upwelling cell is becoming apparent. Imai et al. (2015) further hypothesized that the size 508 

shift is related to nutrient increases within the Indo-Pacific. Based on our records of high nutrient conditions and 509 

likely at least intermittent seasonal eutrophication persisting from at least 11 Ma, we cannot completely follow 510 

their hypotheses that increasing nutrient levels within the surface ocean were the sole driver for this size shift. 511 

Therefore, we propose that changing nutrient limitation within the mixed layer may have played an important, as-512 

of-yet unconsidered role in defining the predominant assemblage structure within the WAS upwelling system 513 

during the Middle and Late Miocene (Fig. 6). 514 

5.1. Wind and nutrient fluxes as primary drivers of plankton communities 515 

The modern productivity patterns and oxygen depletion in the northwestern Indian Ocean differ significantly from 516 

those observed in the studied period. For example, the increase in Mn content in the Maldives in the Pliocene 517 

(Betzler et al., 2016) suggests a significant reduction in Mn redirection, which continued until today. This is indeed 518 

visible in present-day oceanographic records, where elevated Mn concentrations are only found near the margins 519 

of the Arabian Sea (ThiDieuVu and Sohrin, 2013). Meanwhile, denitrification in the Eastern Arabian Sea appears 520 

to have only become significant during the Pliocene (Tripathi et al., 2017). These changes in productivity patterns 521 

thus may indicate that the WAS was potentially more productive during the Late Miocene than today, paired with 522 

an expanded OMZ. 523 

Despite that, we note that even in the most productive parts of the Arabian Sea, conditions are rarely eutrophic 524 

(Fig. 1). As such, ascribing permanent eutrophic or even mesotrophic conditions to any of these assemblages is 525 

unlikely to be reasonable. On the other hand, nannofossil assemblages such as TG 3 with combined diatom 526 

occurrences possibly indicate the prevalence of mesotrophic and eutrophic conditions. Diatoms are generally less 527 

adapted to low nutrient levels, requiring much higher P and N levels than coccolithophores to form blooms 528 

(Hutchins and Bruland, 1998; Litchman et al., 2006). If enough nutrients (including Si) are available, they tend to 529 

outcompete coccolithophores quickly and begin to dominate the mineralizing phytoplankton community (Schiebel 530 

et al., 2004). Based on modern analogs, it seems likely that shifts in the nutrient saturation of upwelling waters 531 

may have controlled the observed patterns in the plankton community along the WAS during the Middle to Late 532 
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Miocene. In particular, we focus on understanding observed patterns of the two dominant phytoplankton groups 533 

present within our record, with the context of their ecological preferences and primary nutrient requirements. 534 

The co-occurrence of diatoms, discoasterids, and sphenoliths in the upper part of the studied interval (Fig. 5) thus 535 

suggests that while nutrient levels were high, upwelling was likely highly seasonal. For the WAS, high seasonality 536 

may be the result of strengthening summer monsoon winds with no changes in winter monsoon winds (Schiebel 537 

et al., 2004; Rixen et al., 2019b; Sarr et al., 2022). Increasing summer but stable or absent winter monsoon 538 

conditions are likely the result of increased cooling in the southern hemisphere (Bialik et al., 2020a; Gadgil, 2018; 539 

Sarr et al., 2022). This asymmetric cooling strengthened the summer monsoon compared to the winter monsoon 540 

system, which only intensified ~7 Ma (Gupta and Thomas, 2003; Holbourn et al., 2018; Rixen et al., 2019b). 541 

The variability in wind and upwelling intensity and their interaction with nutrient availability, thus, likely also 542 

affected the community structure and size variability of primary producers on longer geological time scales. The 543 

community structure of primary producers then exerted control on first-level consumers, such as planktonic 544 

foraminifera. 545 

Upwelling-derived TOC accumulation, primary productivity assemblages, and upwelling indicative foraminifera 546 

show distinctive patterns, which are, however, not in complete agreement with wind proxies and the suggested 547 

expansion of the OMZ around 13 Ma (Betzler et al., 2016). These discrepancies resulted in a long-standing debate 548 

about the validity and usefulness of upwelling proxies as monsoonal indicators (Betzler et al., 2016; Clift and 549 

Webb, 2018; Bialik et al., 2020a; Yang et al., 2020; Sarr et al., 2022). We propose that this disagreement is 550 

primarily due to inadequate treatment of nutrient limitation and nutrient supply in conjunction with wind speed 551 

when evaluating primary productivity in the WAS (Fig. 6). 552 

Modern-day upwelling zones in the low-to-mid-latitudes are generally well supplied in macro-nutrients, resulting 553 

in iron-limited environments or other micro- and nano-nutrient limitations (Moore et al., 2013). However, 554 

currently, the fringing areas of upwelling zones are commonly N-limited through increased denitrification in 555 

underlying OMZs (Moore et al., 2013; Bristow et al., 2017; Anju et al., 2020; Buchanan et al., 2021; Ustick et al., 556 

2021; Buttay et al., 2022). Within the WAS upwelling zone, major nutrients such as N, P, and to some degree, 557 

minor nutrients such as Si are replenished through local recycling and intermixing through deep and intermediate 558 

water masses originating from Antarctica (Fig. 6; Sarmiento et al., 2004; Meisel et al., 2011; Sarmiento and Gruber, 559 

2013; Laufkötter and Gruber, 2018). Iron, a key micronutrient, is primarily supplied through dust and riverine 560 

influxes from surrounding continental sources (Kunkelova et al., 2022).  561 

Accepting that the wind regime had reached peak intensity by 13 Ma following a gradual increase from the end of 562 

the MCO (Betzler et al., 2016, 2018), the significant increase in diatom abundance and TOC accumulation after 563 

12 Ma is not contemporary. Therefore, the availability of nutrients and the nutrient composition also played a key 564 

role in defining the variability between coccolithophore and diatom abundances within the WAS upwelling cell. 565 

Moreover, the shift in the reticulofenestrid morphotypes (Fig. 5) may also be linked to the state of nutrient 566 

limitation. Paasche (1998) also has shown that modern-day coccolithophores tend to increase the formation of 567 

small placoliths during N-limitation. 568 

Therefore, the shift towards higher primary productivity after 12 Ma, including first record of diatoms at Site 722, 569 

may reflect a turnover in nutrient composition along the WAS. Notably, during this time, the northward expansion 570 

of the southern hemisphere westerlies shifted the position of the polar and sub-Antarctic frontal system. In 571 

particular, the Late Miocene sea ice expansion after 11 Ma strongly affected the Antarctic frontal system and, in 572 

turn, the nutrient enrichment of intermediate waters formed in this region (Groeneveld et al., 2017; Bijl et al., 573 
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2018; Laufkötter and Gruber, 2018). Here we propose that changes in the mode of intermediate water formation 574 

significantly increased the quantity of nutrient enrichment of intermediate waters in the Antarctic frontal system, 575 

resulting in modern-like downwelling dynamics around Antarctica. Furthermore, many modeling studies support 576 

the assumption that climatic changes affecting the Antarctic frontal system can strongly influence global 577 

productivity patterns (Sarmiento et al., 2004; Laufkötter and Gruber, 2018; Moore et al., 2018; Taucher et al., 578 

2022). We, therefore, propose that the Middle to Late Miocene productivity changes in the WAS offer compelling 579 

evidence for this hypothesis. 580 

5.2. Miocene nutrient transport and monsoonal upwelling 581 

Thus far, the discussion was focused on local aspects of the record in Site 722 in the WAS and northwestern Indian 582 

Ocean. However, the interconnected nature of the oceanic circulation and nutrient rejuvenation system means that 583 

critical mechanisms may be overlooked without a global perspective. For example, modeling evidence for nutrient 584 

transport and nutrient enrichment in low-latitude upwelling cells allows for the construction of a timeline of 585 

changes along the WAS and their interaction with plankton communities. Moreover, a complete oceanic 586 

perspective allows for contextualization into the broader evolution of the ocean-atmosphere system. 587 

Initial plankton community structures agree with a generally low nutrient regime influenced by progressively 588 

increasing wind regimes, based on a large amount of deep thermocline dwelling taxa in the foraminifer community, 589 

likely following the dominant phytoplankton primary productivity in the deeper photic zone (Lessa et al., 2020). 590 

In addition, the mixed layer is dominated by a diverse nannofossil assemblage (H’-diversity of around 1.5 within 591 

intervals 1 and 2). During the MMCT, wind shear strengthened by 13 Ma, resulting in a significant global shift in 592 

ocean-atmospheric circulation exemplified in the global reorganization of carbonate-platform geometries and 593 

thermocline deepening and ventilation at Site 722, as shown by the increase in mixed-layer dwelling planktonic 594 

foraminifera (Betzler et al., 2016, 2018; Betzler and Eberli, 2019; Lessa et al., 2020). 595 

Modeling studies for the WAS link the initial intensification of upwelling and wind shear to a combination of 596 

increased latitudinal temperature gradients and the emergence of the Arabian Peninsula during the Middle Miocene 597 

(Zhang et al., 2014; Sarr et al., 2022; Yang et al., 2020). Notably, while OMZ expansion and Mn redirection are 598 

evident since at least ~14 Ma at Site 722 (Bialik et al., 2020a) available productivity records support at most 599 

intermittently mesotrophic and likely P- and N-limited conditions before ~12 Ma (Fig. 5). We thus propose that 600 

the upwelling cell in the WAS was wholly influenced by strong post-MMCT winds by 13 Ma. Productivity, 601 

however, was still limited by the upwelling of comparably lower nutrient intermediate waters. Likely originating 602 

in the marginal seas of the northwestern Indian Ocean, these water masses may have been remnants of the Tethyan 603 

Intermediate Waters (TIW). While the Tethyan Seaway had terminated between 14 and 15 Ma (Bialik et al., 2019), 604 

TIW or a similar high salinity mass (Woodruff and Savin, 1989; Smart et al., 2007) was still affecting the Northern 605 

Indian Ocean until at least 12 Ma. This remnant TIW can be considered a more potent form of the modern Red 606 

Sea and Persian Gulf Intermediate Waters (RSPGW; Fig 6). These warm and salty intermediate waters may have 607 

played a much more substantial role in the WAS during the early stages of the uplift of the Arabian Peninsula 608 

(Woodruff and Savin, 1989; Tomczak and Godfrey, 2003; Chowdary et al., 2005; Smart et al., 2007; Acharya and 609 

Panigrahi, 2016). The influence of remnant TIW would also align with the high abundance of thermocline-dwelling 610 

taxa until 12 Ma, which we infer to be representative of a shallow and/or a poorly ventilated thermocline (Sexton 611 

and Norris, 2011; Lessa et al., 2020). 612 
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It thus seems likely that late Middle Miocene WAS upwelling may have been relatively nutrient deficient. We 613 

speculate that these water masses may have suppressed primary productivity, muting the influence of the 614 

increasing Findlater Jets and the emerging Arabian Peninsula (e.g., Sarr et al., 2022). Invoking significant TIW 615 

upwelling until at least 12 Ma would further reconcile the discrepancy between the occurrence of drift deposits in 616 

the Maldives, and thus strong monsoon winds and the first clear evidence for strong upwelling in the WAS, with 617 

the abundance increase of upwelling indicative planktonic foraminifera (e.g., G. bulloides; Fig 5) and the first 618 

occurrence of diatoms at Site 722 (Fig 5; Kroon et al., 1991; Huang et al., 2007b; Gupta et al., 2015; Bialik et al., 619 

2020a). This change in nutrient availability is also reflected by a contemporary increase in medium-sized 620 

reticulofenestrids (R. antarctica and R. haqii), which are generally assumed to reflect higher nutrient availability 621 

due to upwelling (Fig. 5; Auer et al., 2019 and references therein). 622 

Productivity in the WAS thereby only began to increase as remnant TIW got progressively supplanted by other, 623 

more nutrient-rich, water masses. At present, the waters upwelling in the Arabian Sea are nutrient-rich sub-624 

Antarctic mode waters (SAMW) and Antarctic Intermediate Waters (AAIW; Munz et al., 2017; Chinni and Singh, 625 

2022). Today AAIW and SAMW forming in the northern branch of the Antarctic Divergence, control up to 75% 626 

of low-latitude productivity (Sarmiento et al., 2004). 627 

We hypothesize that the increasing formation of AAIW and SAMW following the northward shift of the westerlies 628 

around 12 Ma may have modulated low latitude productivity (Groeneveld et al., 2017; Laufkötter and Gruber, 629 

2018; Moore et al., 2018; Taucher et al., 2022). This time also aligns well with the proposed inception of the 630 

northward shift of southern hemisphere climate belts and the invigoration of the south equatorial current 631 

(LeHouedec et al., 2012; Reuter et al., 2019). Following that, it can also be assumed that by 12 Ma, the northward 632 

expansion of the southern hemisphere Westerlies resulted in a near-modern Antarctic Divergence (Groeneveld et 633 

al., 2017; Laufkötter and Gruber, 2018; Taucher et al., 2022). 634 

This global change in circulation patterns was fully established by 11 Ma, with cool nutrient-rich SAMW/AAIW 635 

waters reaching Site 722, evidenced by a further SST drop (Zhuang et al., 2017). This resulted in the highest 636 

productivity in the WAS upwelling cell during the Miocene (Figs. 5, 6). The Late Miocene high-productivity 637 

interval in the WAS, is thus the result of intense summer monsoon-dominated AAIW/SAMW upwelling, fueled 638 

by the Findlater Jets and forced by steep latitudinal temperature gradients and favorable tectonic conditions on the 639 

Arabian Peninsula (Pound et al., 2012; Zhang et al., 2014; Sarr et al., 2022). Summer months were thus 640 

characterized by eutrophic P-, N-, and potentially Si-enriched waters, allowing the proliferation of diatoms and 641 

other siliceous organisms. In contrast, the winter months favored the accumulation of deep-dwelling discoasterids 642 

that utilized the nutrient-rich waters below a relatively deeper winter thermocline. Higher abundances of mixed-643 

layer dwelling taxa also reflect the increased mixed-layer depth (Fig. 6). Expanding AAIW/SAMW-fueled high 644 

productivity that consequently also resulted in the highest recorded TOC fluxes between 11 – 10 Ma and a 645 

substantial OMZ expansion deep into the equatorial Indian Ocean (Dickens and Owen, 1994; Bialik et al., 2020a). 646 

Increasing OMZs also resulted in a global increase in denitrification, which is well-recorded in foraminifer-bound 647 

δ15N records, showing a trend from more oxygenated intermediate waters during the MCO to lower oxygenated 648 

waters in the Late Miocene in the Indo-Pacific (Auderset et al., 2022). 649 

By 10 Ma, OMZs had reached a critical threshold, leading to another substantial change in nutrient conditions 650 

within the WAS upwelling. Through increased denitrification in the OMZ underlying the upwelling cell, nitrate 651 

and ammonia were lost through bacterial conversion to N2 (Sigman and Fripiat, 2019). Strong denitrification 652 

subsequently led to increasingly N-limited water masses upwelling within the WAS. Although concrete evidence 653 
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is only presented for the WAS, these patterns could also have occurred globally, considering the clear evidence 654 

for decreasing ocean oxygenation during the Late Miocene (Auderset et al., 2022). The Late Miocene N-limitation 655 

in the WAS upwelling cell is chiefly expressed by a decline in diatom abundances after 10 Ma, in conjunction with 656 

overall community shifts in the nannofossil assemblage. 657 

Total upwelling intensity also remained consistently high, as indicated by the available SST record of Zhuang et 658 

al. (2017). Primary productivity thus remained relatively high, which is characterized by the continued presence 659 

and even dominance of large reticulofenestrids, diatoms, and the continuously high TOC concentration within the 660 

sediment (often > 1 wt.%; Fig. 3). We thus assume that the drop in diatom abundance and intermittent decline in 661 

δ15N values at Site 722 (Figs. 3, 5.) were not caused by decreasing upwelling intensity but rather a shift in nutrient 662 

limitation and, thus declining export of diatom-derived organic matter. The increase in sphenoliths within our Site 663 

722 record (Fig. 5) could indicate increased environmental stress within the nannofossil assemblage (Wade and 664 

Bown, 2006). Sphenoliths are here likely not representative of higher stratification (e.g., Karatsolis and Henderiks, 665 

2022), as high TOC and sustained, but lower, diatom fluxes indicate continued upwelling after 10 Ma. Sustained 666 

seasonal upwelling and high organic matter export are further inferred by decreasing organic carbon δ13C 667 

throughout this interval (Fig. 3; Bialik et al., 2020a and references therein). 668 

By 8.8 Ma, N-limitation and environmental stressors resulted in the adaption of smaller reticulofenestrids to the 669 

continued N-limited nutrient availability within the WAS. We base this interpretation on the nutrient adaption of 670 

coccolithophorids based on modern culture experiments (Paasche, 1998). Although somewhat anecdotal, these 671 

offer the currently best explanation to reconcile the herein recorded history of the upwelling cell with the stark 672 

shifts in reticulofenestrids size ranges, at least in this site. It should be noted that these shifts have been recorded 673 

throughout the mid- and low latitudes of the Indopacific (Young, 1990; Imai et al., 2015). However, the full impact 674 

of this hypothesis needs to be tested further. 675 

The data compilation of Young (1990) further shows that the recorded Late Miocene size shift was primarily 676 

limited to the low and mid-latitudes, with larger reticulofenestrids persisting within in the higher latitudes. We 677 

propose that the transition in Reticulofenestra morphology from large to small morphotypes thus primarily 678 

represents a significant shift in nutrient limitation rather than total nutrient availability within the mid to low 679 

latitudes. We further argue that this turnover reflects N-limitation within the low- and mid-latitudes due to 680 

sustained and intense denitrification after 12 Ma (Auderset et al., 2022). Further studies, particularly on 681 

ultrastructural morphotaxonomy of reticulofenestrids, will be needed to fully disentangle the implications of the 682 

proposed N-limited nanno-floral turnover. 683 

The highly opportunistic small Reticulofenestra morphotype was subsequently also able to sustain phytoplankton 684 

blooms in the WAS, as evidenced by the significant increase in nannofossils within the sediment (Fig. 5). 685 

Furthermore, the high mass of small coccolith cells potentially also contributed to the re-establishment of strong 686 

denitrification as evidenced by a rise in δ15N-values after 8.8 Ma (Fig. 3), as their additional biomass contributed 687 

to OMZ re-expansion. Detailed records of Late Miocene OMZ strength throughout the Indian Ocean, will, 688 

however, be necessary to fully quantify the impact on local upwelling. Local tectonics also began to modify the 689 

region configuration at this time (Rodriguez et al., 2014), leading to bottom current intensification (Rodriguez et 690 

al., 2016) which may have also modulated subsequent OMZ dynamics (Dickens and Owen, 1999). 691 
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6. Conclusions 692 

We present fully quantitative nannofossil and planktonic foraminifer assemblage data in conjunction with diatom 693 

frustule abundances for Site 722. Within a multi-proxy framework, these novel data allowed us to disentangle the 694 

complex and long-debated changes within the upwelling system of the WAS in the Middle to Late Miocene. We 695 

show that the Findlater Jets, and thus Indian summer monsoon wind strength, are the primary drivers of upwelling. 696 

However, wind-driven upwelling is also clearly modulated by local and global water mass changes and changing 697 

nutrient fluxes. In particular, changing nutrient transport through intermediate waters has had a significant – until 698 

now unconsidered – impact on primary productivity patterns and plankton communities over the Middle and Late 699 

Miocene in the Indian Ocean. 700 

We, therefore, reach the following key conclusion: 701 

(1) the expansion and evolution of upwelling within the WAS as a complex interplay of regional tectonics, global 702 

climate, and ice volume changes affected upwelling intensity and nutrient availability. The present study 703 

emphasizes that wind and nutrient changes are intrinsically related but do not necessarily operate in tandem on 704 

longer supra-Milankovitch time scales. It is therefore crucial to consider both water masses changes as well as 705 

atmospheric conditions when investigating past wind-driven upwelling regimes. 706 

(2) The interaction first invigorated monsoonal circulation after the MMCT before resulting in the reorganization 707 

of intermediate water circulation, controlled by the inception of a near-modern configuration of the Antarctic 708 

Divergence. 709 

(3) These processes led to the progressive establishment of near-modern nutrient transport within the Indian Ocean 710 

by 12 to 11 Ma (Laufkötter and Gruber, 2018; Sarmiento et al., 2004; Taucher et al., 2022) Furthermore, these 711 

changes acted together with denitrification in expanding global OMZs (Auderset et al., 2022) to increase N-712 

limitation and subsequent adaption of coccolithophorids to the new nutrient conditions in the mid to low latitudes. 713 

(4) We provide a timeline of events that agrees with global climatic and local productivity patterns, which are all 714 

linked through the invigoration of upwelling cells and nutrient fluxes through intermediate water masses into the 715 

lower latitudes. In particular past changes in intermediate water mass circulation, replenishment, and expansion 716 

appear to be a key – and critically understudied – aspect within paleoceanography and paleoclimatology that is 717 

crucial to understanding past and, thereby, future low latitude productivity. 718 
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  1210 

Figure 1: Location map showing the study site ODP Site 722 and IODP Site U1468 and the prevalent summertime wind 1211 
patterns following Bialik et al. (2020a). The present-day extent of the oxygen minimum zone is shown as a pink dashed 1212 
line denoting oxygen concentrations < 20 µmol kg-1 at a water depth of 200 m (McCreary et al., 2013; Garcia et al., 1213 
2018). Eutrophication (magenta shading) data was provided by the E.U. Copernicus Marine Service Information using 1214 
the Global Ocean Colour (Copernicus-GlobColour), Bio-Geo-Chemical, L4 (monthly and interpolated) from Satellite 1215 
Observations (1997-ongoing); https://doi.org/10.48670/moi-00281. Shading represents gap-filled daily Chlorophyll-a 1216 
product of Copernicus GLobColour L4 (Gohin, 2011; Hu et al., 2012; Garnesson et al., 2019) and indicates the 1217 
proportion of time spent in eutrophic conditions in the region, based on the proportion of days (1998-2022) where 1218 
Chlorophyll-a concentration exceeded a threshold of 7.3 mg m-3 (derived from Carlson, 1977). The python code used 1219 
to generate the base map is available in the supplementary material. 1220 
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 1222 

Figure 2: Abundance data of key nannofossil taxa presented as numbers per gram of carbonate over the study interval 1223 
following the methods of Bordiga et al. (2015). The used age model is based on Bialik et al. (2020a). Medium-sized 1224 
reticulofenestrids are separated into morphotypes with an open central area (Reticulofenestra haqii) and a closed 1225 
central area (R antarctica). Discoasteraceae include the genera Discoaster and Catinaster. Color coding represents the 1226 
cluster assignment based on the nannofossil assemblage shown in fig. 4a. 1227 
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 1229 
Figure 3: Geochemical data initially published by Bialik et al. (2020a) as well as TEX86 based SST data of Zhuang et 1230 
al. (2017). Data is shown in conjunction with the cluster analysis results based on the nannofossil assemblages, as shown 1231 
in figure 4a. Total organic carbon (TOC in wt.%) is based on bulk sediment measurements. The Mn/Al ratio and the 1232 
shown dust flux proxy, are based on benchtop XRF counts. Dust flux is calculated as ln((Zr+Ti+Fe)/(Al+K)) based on 1233 
Kunt et al. (2015), with higher values indicating higher deposition of dust-born minerals at Site 722B. Nitrogen isotopic 1234 
data indicate increasing denitrification of sinking organic matter with higher values. 1235 

  1236 

https://doi.org/10.5194/cp-2023-14
Preprint. Discussion started: 30 March 2023
c© Author(s) 2023. CC BY 4.0 License.



36 
 

 1237 
Figure 4: Cluster analysis (a) and nMDS (b) based on the datasets shown in figs. 2 and 3. The geochemical data serves 1238 
as paleoenvironmental proxies for high productivity (total organic carbon and siliceous fragments), high wind intensity 1239 
(dust flux), water column oxygenation (Mn/Al), and high carbonate accumulation (CaCO3 content). Note the high 1240 
correspondence of clusters 3 and, to some degree, 4b siliceous fragment accumulation, dust flux, and high TOC content. 1241 
They indicate that these clusters likely correspond to nannofossil assemblages thriving during intense upwelling. 1242 
Conversely, lower productivity and, thus, higher water column oxygenation are marked by a correspondence of clusters 1243 
2 and 4a with higher Mn/Al values, denoting a less intense oxygen minimum zone. 1244 
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 1246 
Figure 5: Summary of relevant nannofossil taxa (shown as % abundance with the whole assemblage) defining intervals 1247 
1 – 4 and their respective sub-intervals a/b, where applicable. Reticulofenestrids are combined into a single abundance 1248 
graph showing the internal variability of the three defined size ranges of the genus Reticulofenestra. The Shannon (H’) 1249 
diversity is offered as an overall indicator of nannoplankton diversity throughout the study interval. The total 1250 
abundance of nannofossils per gram of sediment (N*1010/g) illustrates the stark increase in nannofossil accumulation 1251 
in interval 4, denoting the noted bloom in small reticulofenestrids after 8.8 Ma. Next, the nannofossil abundances are 1252 
contrasted with diatom abundances (note the abundance scaling of N*109/g). The nannofossil assemblage variability is 1253 
then juxtaposed with classical upwelling indicators based on planktonic foraminifera, which shows an overall constant 1254 
abundance of upwelling indicative taxa (e.g., G. bulloides) between Interval 3a and 4, despite the dynamic changes in 1255 
the phytoplankton data. 1256 
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 1258 

Figure 6: Envisioned progression of upwelling along the Oman Margin based on paleogeography and changing 1259 
intermediate water-based nutrient supply throughout the study interval (c. 15 – 8.8 Ma). The figure also shows the 1260 
hypothesized change in water masses over the study interval. Orange shading represents local water masses forming in 1261 
the northern Indian Ocean migrating southward. Water masses shown are the Tethyan Intermediate Water (TIW), the 1262 
Red Sea and Persian Gulf Intermediate Waters (RSPGW), Indian Central Water (ICW), southern Indian Ocean gyre 1263 
waters (Gyre), sub-Antarctic mode water (SAMW), and the Antarctic intermediate water (AAIW) and Antarctic 1264 
bottom waters (AABW). In addition, note the corresponding change in nutrient (N, P, and Si) transport following the 1265 
proposed northward migration of the southern hemisphere westerlies due to sea ice expansion after 12 Ma (Groeneveld 1266 
et al., 2017). Hypothesized changes in nutrient transport are based on model studies, which predict reduced low-latitude 1267 
productivity during warmer climates (Laufkötter and Gruber, 2018; Moore et al., 2018). 1268 
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Table 1: Ecological interpretation of the defined nannofossil taphogroups based on the ecological parameters of the 1269 
defining nannofossil taxa. 1270 

Tapho- 
group 

Defining Taxa Ecology References Environmental 
Parameters 

TG1a Reticulofenestra minuta 
dominant 

Dominated by r-selected 
opportunistic nannofossil taxa. 
Commonly interpreted as nutrient 
elevation in the photic zone. 

(Haq, 1980; Wade and Bown, 2006; 
Auer et al., 2015) 

Associated with high 
calcium carbonate 
accumulation 

TG1b 
Small and medium 
reticulfenetrids together 
with Cyclicargolithus 
floridanus 

Warm to temperate waters, with 
increased nutrient conditions. 

(Wei and Wise, 1990; Wade and 
Bown, 2006; Auer et al., 2015) 

Associated with high 
calcium carbonate 
accumulation 

TG2 
Cyclicargolithus 
floridanus and common 
medium reticulofenestrids 

Warm to temperate waters, with 
moderate nutrient conditions. 

(Wei and Wise, 1990; Wade and 
Bown, 2006; Auer et al., 2015) 

Associated with high Mn/Al 
ratios (= weak OMZ) and 
elevated carbonate content 

TG3 
Large reticulofenetrids 
dominant with common 
Discoastrids 

Elevated nutrient conditions with 
deep nutricline and possible 
(seasonal) stratification 

(Lohmann and Carlson, 1981; 
Backman et al., 2013; Imai et al., 
2015, 2017) 

Associated with biogenic 
silica, TOC, dust flux and 
lowered Mn/Al ratios 
(=stronger OMZ) 

TG4a 

Variable small, medium 
and large 
reticulofenestrids with 
common Sphenolithus 
spp. and discoasterids 

Elevated nutrient conditions with 
high seasonal variability and 
intermittent stratification, possible 
indication of increased 
environmental stress. 

(Castradori, 1998; Blanc-Valleron et 
al., 2002; Gibbs et al., 2004b; Wade 
and Bown, 2006; Villa et al., 2008; 
Beltran et al., 2014; Imai et al., 2015; 
Schueth and Bralower, 2015) 

Weakly associated with 
carbonate accumulation and 
higher Mn/Al ratios (= weak 
OMZ) 

TG4b Large reticulofenestrids 
dominant 

High nutrient conditions, likely open 
marine and potentially stratified. 

(Auer et al., 2014, 2015; Beltran et 
al., 2014; Imai et al., 2017, 2015) 

Weakly associated with 
biogenic silica flux, TOC and 
reduced Mn/Al ratios (= 
increasing OMZ) 

TG4c 
Medium and large 
reticulofenestrids 
dominant 

High nutrient levels, likely 
upwelling derived. 

(Haq and Lohmann, 1976; Lohmann 
and Carlson, 1981; Wade and Bown, 
2006; Auer et al., 2014, 2019) 

Not associed with Mn/Al 
ratios (= strong OMZ), no 
strong association with other 
paramters 
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Table 2: Interpretation of habitat depth of the identified planktonic foraminifer taxa. 1273 

Taxa Habitat Reference Comments 

Dentoglobigerina altispira open ocean mixed-layer (Berggren et al., 1985; Aze et 
al., 2011) Symbiont bearing 

Fohsella fohsi open ocean thermocline  (Aze et al., 2011)  

Fohsella peripheroronda open ocean thermocline  (Berggren et al., 1985; Aze et 
al., 2011) Extends to cool subtropical waters  

Globigerina bulloides upwelling (Kroon et al., 1991)  

Globigerina sp. open ocean mixed-layer (Aze et al., 2011)  

Globigerinita glutinata open ocean mixed-layer (Majewski, 2003; Pearson and 
Wade, 2009) 

 

Globigerinoides obliquus open ocean mixed-layer (Nikolaev et al., 1998)  

Globigerinoides ruber open ocean mixed-layer (Nikolaev et al., 1998) Symbiont bearing 

Globigerinoides sp. open ocean mixed-layer  Based on another present taxa of this 
genus 

Globoquadrina dehiscens open ocean thermocline  (Pearson and Shackleton, 1995; 
Nikolaev et al., 1998) 

Noted to be erratic and variable by 
Pearson and Shackleton (1995). 

Globorotalia archaeomenardii open ocean thermocline   Based on similarities to G. manardii 

Globorotalia menardii open ocean thermocline  (Regenberg et al., 2010)  

Globorotalia plesiotumida open ocean thermocline  (Aze et al., 2011)  

Globorotalia scitula open ocean sub-thermocline  (Itou et al., 2001) G. scitula flux is inverse to POC flux 

Globorotalia sp. open ocean thermocline   Based on another present taxa of this 
genus 

Globorotaloides hexagonus upwelling (Spezzaferri, 1995) May also be deep sub-thermocline 
dweller (Brummer and Kučera, 2022) 

Globoturborotalita druryi open ocean mixed-layer (Kennett and Srinivasan, 1983; 
Aze et al., 2011) Symbiont bearing 

Globoturborotalita nepenthes open ocean mixed-layer (Aze et al., 2011)  

Neogloboquadrina acostaensis open ocean thermocline  (Aze et al., 2011)  

Orbulina universa open ocean mixed-layer (Aze et al., 2011)  

Paragloborotalia mayeri open ocean thermocline  (Aze et al., 2011)  

Sphaeroidinellopsis seminulina open ocean thermocline  (Aze et al., 2011)  

Sphaeroidinellopsis sp. open ocean thermocline  (Aze et al., 2011)  

Trilobatus quadrilobatus open ocean mixed-layer (Chaisson and Ravelo, 1997) Deep mixed layer in Nikolaev et al. 
(1998) 

Trilobatus sacculifer open ocean mixed-layer (Aze et al., 2011) Symbiont bearing 

Trilobatus trilobus open ocean mixed-layer (Aze et al., 2011) Symbiont bearing 
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